Measuring the Proton's Radius | The Institute for Creation Research

Measuring the Proton's Radius

When we want to measure something in our everyday lives, we set a ruler against the object in question and read its dimensions from the markings. Things are not so simple when we attempt to measure objects as small as a proton or neutron (1 × 10-15 meters, or 1 fm). It’s particularly important to measure the radius of the proton since it is the only known stable baryon (particles made of three quarks) in nature.

Because protons and neutrons are so small, we cannot directly observe their interaction with any measuring device. We must observe the results of that interaction and infer their dimensions from those results. Indeed, at subatomic levels, the results of a measurement not only depend on how the measurement is done but on the energy at which it is made and the type of probe used to make the measurement. In an earlier Acts & Facts article, we saw explicitly how these things can affect a measurement of the proton’s radius.1

Figure 1. A schematic diagram of two possible events that could occur when an electron scatters off the quarks that make up a proton. The two different events illustrated will produce different results in a detector.

A recent article in Physics Today attempted to reconcile the differences between two earlier measurements of the proton’s radius.2 Several months later, a follow-up article in Science News indicated that the differences between the two measurements—i.e., direct electron scattering off the proton vs. measurement of the Lamb shift in muonic hydrogen—still remained after extensive efforts at reconciliation with theoretical models.3

So, why all the uncertainty about the dimensions of a proton’s radius? The proton is a composite particle made up of two up quarks and one down quark, with gluons continually exchanged between the quarks (see Figure 1). If we use a fermion particle, e.g., an electron or muon, to measure the radius of the proton, we will be effectively measuring the extent of the proton’s electromagnetic field and therefore its electronic radius (~ 0.9 fm) rather than its actual radius. On the other hand, if we use an electrically neutral hadron particle, e.g., a neutron or a neutral pi-meson, we are effectively measuring the extent of the proton’s strong field, or the range of the strong nuclear force (~ 1.4 fm), rather than the actual physical radius.

The gravitational force is many orders of magnitude too small at subatomic distances to be a suitable probe. The weak nuclear force is approximately three orders of magnitude (10-3) too small to be an effective probe for this measurement.

There are many ways an incident electron can interact with the target proton.4 It can hit a quark head-on and recoil backward. It can be diverted around an up quark (+ charge) or away from a down quark (- charge). Or it can interact with two or three of the constituent quarks before it exits the nucleus’ electromagnetic field. If the photon emitted by the electron in interacting with the quarks has sufficient energy, it can “pair produce” an electron and positron in the nucleus’ electromagnetic field. All these potential interactions are theoretically possible and thus must be accommodated by any model/hypothesis attempting to explain the observational results and extract the proton’s radius from the data. To date, no proposed model/hypothesis has been able to adequately account for the observed discrepancies between the two data sets. Clearly, the Standard Model of physics doesn’t yet explain everything.

Science is a wonderful tool for investigating the natural world we live in, but we should always remember that science is performed and interpreted by fallible human beings. Tweet: Science is a wonderful tool for investigating the natural world we live in, but we should always remember that science is performed and interpreted by fallible human beings.

Measuring the Proton's Radius: http://www.icr.org/article/10436/

@icrscience

Science is a wonderful tool for investigating the natural world we live in, but we should always remember that science is performed and interpreted by fallible human beings. Thus, there is always a place for faith in the human soul. The ultimate question for every human is, in what are you going to put your faith—man or God?

References

  1. Cupps, V. R. 2014. Proton Problems: Faith in Theories or Reality? Acts & Facts. 43 (4): 9.
  2. Blau, S. K. 2017. Proton structure seen in a new light. Physics Today. 70 (5): 14-15.
  3. Conover, E. 2017. Proton size still perplexes despite a new measurement. Science News. 192 (8): 14.
  4. The proton in an atom is thousands of times smaller than the atom itself, and electrons and quarks are thousands of times smaller than the proton, possibly infinitely smaller if they are point particles.

* Dr. Cupps is Research Associate at the Institute for Creation Research and earned his Ph.D. in nuclear physics at Indiana University-Bloomington. He spent time at the Los Alamos National Laboratory before taking a position as Radiation Physicist at Fermi National Accelerator Laboratory, where he directed a radiochemical analysis laboratory from 1988 to 2011. He is a published researcher with 73 publications.

Cite this article: Vernon R. Cupps, Ph.D. 2018. Measuring the Proton's Radius. Acts & Facts. 47 (2).

The Latest
NEWS
''Inside-Out'' Fossil is Amazingly Preserved
It is widely known that vast numbers of fossils—vertebrate and invertebrate—have been discovered incredibly well-preserved.1,2...

NEWS
The Resurrection and the Origin of Life
At Easter time we focus on the cardinal Christian doctrine of the Resurrection. Without the Resurrection, Christianity is a sham. The truth that Jesus...

NEWS
Is an Ancient Extinct Tree-Dweller Our Relative?
Human evolution has always been hazy with seemingly as many attempted explanations for how we evolved from animals as there are paleoanthropologists. Evolutionists...

NEWS
The Return of the Dire Wolf?
There’s been much recent excitement about the birth of three dire wolf (Aenocyon dirus) puppies by a Dallas-based biotech company: Colossal Bioscience....

CREATION PODCAST
Cracks in the Layers: Lake Suigetsu and the Old Earth Illusion...
Welcome to the third episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old earth...

NEWS
Fish Fossil Vomit
A rather unsavory news story recently appeared regarding fossilized vomit. Although it’s hardly dinner table conversation, it nonetheless supports...

NEWS
Dino Footprints Down Under
Dinosaur trackways1 are once again making the news. Australia is the setting of a remarkable series of dinosaur tracks attributed to ornithischian...

NEWS
April 2025 ICR Wallpaper
"But the Helper, the Holy Spirit, whom the Father will send in My name, He will teach you all things, and bring to your remembrance all things...

NEWS
Human Evolution and the Inner Ear
The vain attempt by evolutionists to make an evolutionary connection between people and ape-like ancestors continues. This time, it is in regard to...

CREATION PODCAST
Defending the Faith with a Rocket Scientist | Creation.Live Podcast:...
How do engineering principles, biological complexity, and a solid understanding of apologetics work together to further the cause of Christ? Why...