Do Maillard Reactions Explain Dinosaur Proteins? | The Institute for Creation Research

Do Maillard Reactions Explain Dinosaur Proteins?

How could dinosaur proteins persist over 70 million years inside dinosaur bones? That’s one of the biggest questions that secular paleontologists have faced in the last two decades. Many of them reason that some unique but undiscovered set of conditions grant proteins power to defy all odds and somehow survive unimaginable time scales. They think someone, someday, will discover the protein’s secret to survival. A new model suggests those long-sought conditions have come forth. And the once-secret rescuing device has a name: Maillard reactions. Does this common chemistry really explain the issue like its champions suggest, or does it leave ancient organics just as frail as ever?

Maillard reactions happen when proteins react with sugars to form dark-colored polymers. It’s what makes bread crusts and puts the outer crust on French fries. It happens between 280 and 330 °F—temperatures that some fossils reached while buried deep beneath the earth. A new feature in the journal Science highlights the recent toast model of Jasmina Wiemann and her former supervising professor Derek Briggs at Yale University.1 They claimed in 2018 that this crusty protein-turned-polymer “explains the preservation of fragile soft tissues in certain chemical environments through deep time.”2

The new feature in Science shows that deep-time advocates are latching onto the toast model of tissue preservation.3 Those hopping on this bandwagon believe that the model’s premise rolls along just fine. However, four failures break off the wheels of this toast model.

First, the toast model teaches that the original proteins have turned into crusty polymers, but several technical papers have reported quite soft, flexible, stretchy protein-packed tissues in fossils.4

Second, the toast model teaches that the original proteins turned into dark polymers, and yet several researchers have reported clear, white, and light-colored proteins in fossils.

A third failure comes from the fact that nobody actually knows how long these polymers can last, let alone that they could last tens of millions of years. Synthetic polymers, like plastics, should be stronger than toasted tissues, yet they begin degrading before our very eyes. Gretchen Vogel wrote in the Science feature that the polymers “can apparently last for eons.”1 This is only “apparent” to those already committed to the idea of “eons.” The polymers lasted for millions of years for those who assume the fossils are that old. Meanwhile, nobody has yet run decay experiments on AGE’s (Advanced Glycation End products) or ALE’s (Advanced Lipoxidation End products).

A final failure offers an even greater threat to the toast model bandwagon’s progress. Even though the fossils that Wiemann and Briggs selected have Maillard-derived polymers, those polymers may have nothing to do with the presence of actual proteins detected and even sequenced from dinosaur and other remains.4 Explaining the origins of saran wrap sidesteps the origins of the steak it covers.

Do Maillard reactions really rescue soft tissue fossils from the ravages of deep time? Only in the minds of those who care about rescuing millions of years more than they care about accurate science. The idea that these fossils formed thousands, not millions, of years ago explains both original organics in fossils and protein decay rates.

References
1. Vogel, G. 2019. Seeing Fossils in a New Light. Science. 366 (6462): 176-178.
2. Wiemann, J. et al., 2018. Fossilization transforms vertebrate hard tissue proteins into n-heterocyclic polymers. Nature Communications. 9: 4741.
3. Thomas, B. Soft Tissue Fossils Preserved by Toasting? Creation Science Update. Posted on icr.org December 20, 2018, accessed September 16, 2019.
4. See references in Thomas, B., S. Taylor, and K. Anderson. 2019. Some strengths and weaknesses of the polymer shield explanation for soft tissue fossils. Journal of Creation. 33 (2): 6-9.

Dr. Brian Thomas is Research Associate at the Institute for Creation Research.

The Latest
NEWS
ICR Scientist Publishes Dino Protein in Mainstream Journal
Conventional thinking relegates creationists—folks who believe that God created the world only thousands of years ago—to quack science....

NEWS
Why Aren't There Any Flightless Bats?
Animals designed to fly are classified into four groups: the extinct flying reptiles (pterosaurs), insects, mammals (bats), and birds. According to...

DAYS OF PRAISE DEVOTIONALS
Spring 2025
...

NEWS
Rocky Exoplanets Are Literally Being Vaporized
Astronomers have discovered a disintegrating rocky planet in another solar system.1,2 This extrasolar planet, or exoplanet, has been given...

CREATION PODCAST
Hot Springs & Badlands – Folded Rock, Fossil Graveyard, and...
America is home to stunning forests, mountains, monuments, and other wondrous features. The unique beauty of many of these locations has prompted...

NEWS
Mammals ''Shrank'' After Post-Flood Ice Age
By examining fossils from 19 archaeological sites in Jordan’s Azraq Basin, researchers have concluded that gazelles, hares, and foxes shrank in...

NEWS
Breaking News: Ancient Mollusks Were Complex
Mollusks consist of a wide range of invertebrates that include the intelligent octopus, pulmonated snails (gastropods), and bivalves (clams). They appear...

NEWS
Dino Trackway Leads Straight to a Young Earth
Uncovering animal tracks and trackways in sedimentary rocks is a testament to the Genesis Flood.1–4 Fascinating discoveries continue...

NEWS
February 2025 ICR Wallpaper
"But God demonstrates His own love toward us, in that while we were still sinners, Christ died for us." (Romans 5:8 NKJV) ICR's...

CREATION.LIVE PODCAST
Fascinating Dino Fossil Finds! | Creation.Live Podcast: Episode...
Dinosaurs are fascinating creatures and the fossils they've left behind inspire awe and wonder. Many scientists claim that the existence of...