Control Loops in Humans and Nature | The Institute for Creation Research

Control Loops in Humans and Nature
Ever had a blood test? Along with a value measured, there are also the normal max/min limits for that value. This implies that the body normally controls that quantity between those limits. How does it do that?

It measures the value and produces more or less of that quantity based on the value measured. This is called a control loop. There are hundreds of thousands, perhaps millions, of control loops in the human body.

To understand the components of a control loop, let us look at a familiar example: controlling the temperature in your home. A thermostat measures the room temperature. The logic is to turn the power to the heater on if the room temperature is below a set temperature, T1. When the temperature rises above a second set temperature, T2, the thermostat turns the power off.1 This control loop is shown in Figure 1. It is called a loop because the heater output, the heat, is looped back through the room to the thermostat (called feedback) to provide control.

In summer, when the ambient temperature is high, the heater remains off. Note that all the components of the heating system are still there—the thermostat, the heater, and the power to run it. The heating system does not “devolve” in summer, it is just quiescent. In winter, when temperatures are low again, the heat comes back on. The heating system did not re-evolve. It was there all the time, just latent!

Figure 1. A Typical Thermostat Control Loop Used for Heating Systems.2
 
The above system is an example of continuous environmental tracking (CET) or monitoring. The thermostat is continuously monitoring the temperature, i.e. the environment, and is ready to respond when needed.

We find similar systems in the human body. Some examples are sweating when hot and shivering when cold. These reactions occur only when needed, as in the heating control loop above, and are otherwise latent.

Biological control loops function by turning hormones and/or genes on and off, like the power example above. Similar to the thermostat in summer, some can be latent for extended periods. For example, blood doesn’t clot (fortunately) until we have a cut. Then, many mechanisms turn on to stop the bleeding. They turn off when the bleeding is stopped. In this example, there are loops within loops (called nested loops) that can provide coarse and fine control. The control loops are always there, operating when needed, similar to the heater loop above.

Control loops governed by genes may be off for long periods of time, even for a lifetime, by epigenetics, as in adaptation. The controlling genes remain (every cell has the full genome) but just aren’t active or expressed (like turning off the power). A chemical binds to specified DNA regions turning genes off or on, disabling the control loop. On a micro-scale, nerve cells and muscle cells have the same DNA, but because different genes are turned on/off, they have entirely different attributes and functions. The same genome is still there, just adapted. On a macro-scale, epigenetic changes can be inherited and help people adapt to their environments.

In conclusion, functional changes are easily explained by biological control loops continuously monitoring their environment. They may be active, latent (ready when needed), or turned off. They explain biologic functioning and adaption. Evolution/devolution doesn’t make sense.

Notes
1. When a control loop has only two states—power fully on or off—it’s called a bang-bang control loop. This differs from the more common proportional control loop, or servo loop.
2. In mechanical thermostats, the detection and logic are combined.

*Dr. Siebert earned his Ph.D. in equations of quantum mechanics from the Polytechnic Institute of New York University. He is a freelance contributor to ICR’s Creation Science Update, has worked 40 years in electro-optics, and held numerous patents.
The Latest
NEWS
Marine Mammals: Designed for Deep Diving
While you’re reading this, hold your breath. What is now happening is your blood is delivering the last of oxygenated blood cells to your tissues...

CREATION PODCAST
Humanity's Demise at the Hands of Genetic Entropy | The Creation...
Welcome to the fourth episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old earth...

NEWS
''Inside-Out'' Fossil is Amazingly Preserved
It is widely known that vast numbers of fossils—vertebrate and invertebrate—have been discovered incredibly well-preserved.1,2...

NEWS
The Resurrection and the Origin of Life
At Easter time we focus on the cardinal Christian doctrine of the Resurrection. Without the Resurrection, Christianity is a sham. The truth that Jesus...

NEWS
Is an Ancient Extinct Tree-Dweller Our Relative?
Human evolution has always been hazy with seemingly as many attempted explanations for how we evolved from animals as there are paleoanthropologists. Evolutionists...

NEWS
The Return of the Dire Wolf?
There’s been much recent excitement about the birth of three dire wolf (Aenocyon dirus) puppies by a Dallas-based biotech company: Colossal Bioscience....

CREATION PODCAST
Cracks in the Layers: Lake Suigetsu and the Old Earth Illusion...
Welcome to the third episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old earth...

NEWS
Fish Fossil Vomit
A rather unsavory news story recently appeared regarding fossilized vomit. Although it’s hardly dinner table conversation, it nonetheless supports...

NEWS
Dino Footprints Down Under
Dinosaur trackways1 are once again making the news. Australia is the setting of a remarkable series of dinosaur tracks attributed to ornithischian...

NEWS
April 2025 ICR Wallpaper
"But the Helper, the Holy Spirit, whom the Father will send in My name, He will teach you all things, and bring to your remembrance all things...