Circadian Clocks, Genes, and Rhythm | The Institute for Creation Research

Circadian Clocks, Genes, and Rhythm

Life could not exist without organisms’ engineered ability to keep track of time on a 24-hour day-night cycle called a circadian rhythm. Even sophisticated electronic machines such as computers or microcontrollers have a central clock or an oscillator. This critical design feature must be in place for complex systems to work on a schedule, interface with other system components, and interact with the environment.

The circadian clocks in plants and animals are far more advanced than those in man-made systems. These living clocks regulate many aspects of genetics, metabolism, physiology, growth, and behavior in numerous types of cells and tissues throughout the entire organism.1,2 In fact, animals typically have not only a centralized circadian clock in their brain but also many peripheral clocks in different tissues and organs. These peripheral clocks regulate temporal and spatial organization and physiology in whatever cell, tissue, or organ they are located, and they also keep systems in sync with the central clock in the brain. Clearly, a complex cellular communication network connects tissues and body parts within a time-based context—a phenomenon that still isn’t fully understood.

Because biological networks in plants and larger animals are so complicated, such systems are best studied in “simpler” organisms like fruit flies. A number of key regulatory gene families at the apex of circadian rhythm control—given clever names like CLOCK, CYCLE, PERIOD, and TIMELESS—have been found to play major roles in cellular system oscillation.1,2 These genes produce proteins called transcription factors that act as master switches in the genome, turning on other genes in a hierarchical, highly coordinated fashion. In fact, several of these genes produce proteins that are also responsive to light, modulating their function in the cell according to external light intensity and the type of light (e.g., blue light). Perhaps the most amazing thing is that the specific functions of these “peripheral clock” genes vary depending on the type of tissue the cell resides in, yet its localized systems still keep in overall sync with the organism’s central clock.

Not even electronic devices exhibit this level of dynamic complexity, with numerous circadian clocks interactively communicating across networks of tissues as well as within the same tissue.

This level of interconnectivity and complexity is essentially impossible for humans to comprehend and unravel, yet its existence is unscientifically ascribed to the random processes of evolution. An internetworked and interdependent system like this is an excellent example of irreducible complexity, specifically the myriad of components that must be in place all at once for it to work.

Appealing to evolution to develop this vast complexity through random mutations and alleged selective pressures bit by bit is absurd. Only a masterful, omnipotent Engineer could have put such a fantastic and orchestrated system as this into place—not just once but in thousands of uniquely created kinds of plants and animals. The more we understand about the genetics of living things, the more glory we should give their Creator.

References

  1. Ito, C. and K. Tomioka. 2016. Heterogeneity of the Peripheral Circadian Systems in Drosophila melanogaster: A Review. Frontiers in Physiology. 7 (8).
  2. Tataroglu, O. and P. Emery. 2015. The molecular ticks of the Drosophila circadian clock. Current Opinion in Insect Science. 7: 51–57.

* Dr. Tomkins is Director of Life Sciences at the Institute for Creation Research and received his Ph.D. in genetics from Clemson University.

Cite this article: Jeffrey P. Tomkins, Ph.D. 2016. Circadian Clocks, Genes, and Rhythm. Acts & Facts. 45 (7).

The Latest
NEWS
The Light of Christmas
Over the last two millennia, December 25th became the customary commemoration of the birth of Christ. But this was not always so. Other dates were recognized...

NEWS
Butterfly Learning and Memory
Insects, such as the winged insects in the order Lepidoptera, continue to reveal incredible abilities with some facets that zoologists thought were...

CREATION PODCAST
3 Game-Changing Benefits of a Theory of Biological Design | The...
Science is objective. At least, that’s what we’re told. But there are inherent issues with this statement that can cause very real...

NEWS
Hong Kong Dinosaurs Explained by the Flood
The recent discovery of the first dinosaur fossils in Hong Kong came as a surprise to evolutionary paleontologists. It was totally unexpected since...

NEWS
''Ancient'' Skin Impressions
Cornified skin is the top layer of skin (epidermis) and is composed of dead skin cells that are tightly packed together and thickened. This is the Creator’s...

NEWS
Heart Cockle Shells: Another Amazing Case for Creation
There has been an incredible discovery concerning a bivalve mollusk called the heart cockle (Corculum cardissa). These bivalves have symbiotic partnerships...

NEWS
Bird Brain Evolution?
Recently, a fascinating bird skull dated by evolutionists to be over “80 million years old” was discovered at a Brazilian quarry.1 Paleontologists...

CREATION PODCAST
Undoing Darwin's DEVIOUS Designs | The Creation Podcast: Episode...
Science is objective. At least, that’s what we’re told. But there are inherent issues with this statement...

NEWS
December 2024 ICR Wallpaper
"Therefore the Lord Himself will give you a sign: Behold, the virgin shall conceive and bear a Son, and shall call His name Immanuel." (Isaiah...

CREATION.LIVE PODCAST
From the Beginning to the End | Creation.Live Podcast: Episode...
Genesis and Revelation provide stunning bookends of the biblical canon. The first describes the beginning of creation while the second gives us...