Collagen Decays Too Fast for Evolutionary Time | The Institute for Creation Research

Collagen Decays Too Fast for Evolutionary Time

Collagen is a tough, stringy protein that holds bone together like the steel belts in tires. Secular scientists struggle to explain why so many different techniques have found positive detections of collagen in fossil bones. At the heart of the scientists’ struggle lies collagen’s relatively short shelf life. Prior studies accurately measured collagen content,1 but more precisely knowing collagen’s decay rate would set a sharper outside age limit for fossils that still contain it.

New techniques for Fourier transform infrared spectroscopy (FTIR) could improve this level of precision. As part of my recent Ph.D. research, I applied FTIR to hundreds of artificially decayed bone samples. Some experimental results appear both in my secular dissertation, searchable through scholarly libraries, and in an upcoming ICR technical book titled Ancient and Fossil Bone Collagen Remnants. Other results we show here for the first time, and still others are under review in a secular technical journal. Here’s what we did to get the findings.

Fourier Transform Infrared Spectroscopy (FTIR)
Image credit: Brian Thomas

ICR partnered with the Creation Research Society’s Kevin Anderson. He and his team purchased fresh bone, cleaned and ground it, then placed it into glass vials. These were inserted into water baths set to three different temperatures. Samples were removed after a set number of days that didn’t exceed a month. After that, a Dallas-based university lab allowed us access to their benchtop FTIR to scan the samples.

One new technique in FTIR applications uses the carbonyl-to-phosphate (CO/P) ratio to estimate collagen content. Each FTIR scan shows peaks where specific chemical bonds absorb laser light. Fresh bone is packed with carbonyl bonds from its abundant collagen, giving its infrared spectra large CO peaks. Phosphate bonds represent the mineral portion of bone. They last much longer, so the P peaks stay high in both fresh and old bone. The CO/P ratio lessens with time and decreases even faster at higher temperatures.

Another new technique standardizes bone processing for FTIR. This step controlled variations in the spectra caused by particle size differences. All experiments were replicated and all scans performed in triplicate.

I calculated and averaged the many CO/P results. I then plotted them for each of three temperatures. The resulting curves show that collagen decays fast at first, then more slowly as time passes. The curves have R2 values of around 0.90. These results indicate very little scatter and show the high precision we were seeking.

The Arrhenius plot relates temperature to the decay rate of bovine bone collagen.
 

I then used the slopes to build an Arrhenius plot. The slope and intercept values of the plot help solve the Arrhenius equation, which relates temperature to the rate of a chemical process, in this case the reactions of collagen with oxygen and other nearby chemicals.2 We found an activation energy value for bovine bone collagen of 87 kJ/mol—half of a previously published experimental result of 173 kJ/mol.3 Our lower value implies even less energy is needed to decay collagen. It should decay even faster than scientists originally thought.

For example, bovine bone collagen held at 59°F would decay with a half-life of 21,012 years under ideal conditions. At that rate, collagen would not last even one million years. If Noah’s Flood deposited the fossils only 4,500 or so years ago as the Bible indicates, then we might expect some biomaterial to remain. No wonder scientists keep finding collagen in fossils.

References

  1. For example, Collins, M. J. et al. 1995. A Basic Mathematical Simulation of the Chemical Degradation of Ancient Collagen. Journal of Archaeological Science. 22 (2): 175-183.
  2. We used the form k = Ae-Ea/(RT), where k is the rate, A is a collision constant, e is the base of natural logarithms, Ea is the energy of activation, R is the gas constant, and T is temperature. Our experimental results produce Ea and A. The Arrhenius equation to calculate a collagen decay rate for any given temperature.
  3. Buckley, M. and M. J. Collins. 2011. Collagen survival and its use for species identification in Holocene-lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua. 1 (1): e1.

* Dr. Thomas is Research Associate at the Institute for Creation Research and earned his Ph.D. in paleobiochemistry from the University of Liverpool

Cite this article: Brian Thomas, Ph.D. 2019. Collagen Decays Too Fast for Evolutionary Time. Acts & Facts. 48 (8).

The Latest
NEWS
Is an Ancient Extinct Tree-Dweller Our Relative?
Human evolution has always been hazy with seemingly as many attempted explanations for how we evolved from animals as there are paleoanthropologists. Evolutionists...

NEWS
The Return of the Dire Wolf?
There’s been much recent excitement about the birth of three dire wolf (Aenocyon dirus) puppies by a Dallas-based biotech company: Colossal Bioscience....

CREATION PODCAST
Cracks in the Layers: Lake Suigetsu and the Old Earth Illusion...
Welcome to the third episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old earth...

NEWS
Fish Fossil Vomit
A rather unsavory news story recently appeared regarding fossilized vomit. Although it’s hardly dinner table conversation, it nonetheless supports...

NEWS
Dino Footprints Down Under
Dinosaur trackways1 are once again making the news. Australia is the setting of a remarkable series of dinosaur tracks attributed to ornithischian...

NEWS
April 2025 ICR Wallpaper
"But the Helper, the Holy Spirit, whom the Father will send in My name, He will teach you all things, and bring to your remembrance all things...

NEWS
Human Evolution and the Inner Ear
The vain attempt by evolutionists to make an evolutionary connection between people and ape-like ancestors continues. This time, it is in regard to...

CREATION PODCAST
Defending the Faith with a Rocket Scientist | Creation.Live Podcast:...
How do engineering principles, biological complexity, and a solid understanding of apologetics work together to further the cause of Christ? Why...

NEWS
Aerobic and Anaerobic Hot Spring Bacteria
God designed a domain of prokaryotes called Archaea that thrive in harsh and extreme environments. In 1969, two microbiologists, Thomas Brock and Hudson...

CREATION PODCAST
The Soulless Hominid Theory: A Fatal Flaw in Old Earth Creationism...
Welcome to the second episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit...