'smORFs': Functional Little Genome Gems Confront Evolution | The Institute for Creation Research

'smORFs': Functional Little Genome Gems Confront Evolution

Until recently, thousands of tiny, potential protein-coding regions in the genome called "small open reading frames" or "smORFs" have been difficult to identify. They are now getting well-deserved attention for the important biochemical functions they play in the cell—like making your heart beat.1

In the present study published in Science, researchers found two smORF-encoded proteins in fruit fly genomes that were 28 to 29 amino acids in length and involved in regulating calcium transport and calcium intake in muscle and heart cells.1 And based on these proteins' 3-D shape and function in flies, the researchers found two counterparts in humans, which they also characterized and found to be involved in calcium uptake and heart muscle function as well.

Based on their 3-D shape, the researchers claimed that the human smORF proteins evolved from fly smORFs over a span of 550 million years, despite the fact that the DNA sequences that encode them showed virtually no similarity. The authors of the report revealed this contradiction burying it in the middle of their report where they said, "We searched for conservation of these smORFs in other species by using Basic Local Alignment Search Tool (BLAST) and only identified them in other Drosophilids [other fruit flies] (page 1118)."1 In other words, the DNA sequences for these smORFs were specific only to fruit flies and showed no evolutionary relationship to humans or any other creature. For all practical purposes, the evolutionary story behind this discovery was marginal all along.

Most of the proteins produced in the human genome are about 500 amino acids long on average. The proteins encoded by smORFs are only about 10 to 30 amino acids long and have been largely found by happenstance while studying gene mutations. Noted Harvard University physiologist, Alan Saghatelian (not an author on the current study) said, "These things have fallen through the cracks of traditional gene-finding algorithms, and most of the ones we know about have been serendipitously discovered."2

Interestingly, the smORF-related genes that contain segments that encode these small proteins—called long non-coding RNAs or lncRNAs—are often quite long (much like protein-coding genes), are complexly regulated, and highly multifunctional.1 These lncRNA genes occupy the regions of the genome once thought to be nothing but junk DNA. However, lncRNAs have been found to be highly cell and tissue specific in their function and also encode other important regulatory molecules like micro RNAs. Some lncRNAs also combine with various proteins to make different types of important cell machinery and are key players in epigenetic modifications (chemical tagging) in controlling the genome's function.3 Amazingly, lncRNAs are also proving to be key players in DNA repair, 3-D chromosomal positioning in the nucleus, and overall genome stability and function.4

Since no real DNA sequence-based evolutionary relationships exist for these human and fruit fly smORFs encoded within lncRNA genes, the most important news about this discovery is the continuing revelation of pervasive design and function in the genome—further negating the weak evolutionary paradigm of junk DNA.

References

  1. Magny, E. et al. 2013. Conserved Regulation of Cardiac Calcium Uptake by Peptides Encoded in Small Open Reading Frames. Science. 341 (6150): 1116-1120.
  2. Yong, E. Hidden Treasures. The Scientist. Posted on the-scientist.com August 22, 2013, accessed September 20, 2013.
  3. Rinn, J. L. and H. Y. Chang. 2012. Genome Regulation by Long Noncoding RNAs. Annual Review Biochemistry. 81:145–166.
  4. Ohsawa, R. J. H. Seol, and J. K. Tyler. 2013. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence. Frontiers in Genetics. 4 (36). doi:10.3389/fgene.2013.00136.

*Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in genetics from Clemson University.

Article posted on October 14, 2013.

The Latest
NEWS
Marine Mammals: Designed for Deep Diving
While you’re reading this, hold your breath. What is now happening is your blood is delivering the last of oxygenated blood cells to your tissues...

CREATION PODCAST
Humanity's Demise at the Hands of Genetic Entropy | The Creation...
Welcome to the fourth episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old earth...

NEWS
''Inside-Out'' Fossil is Amazingly Preserved
It is widely known that vast numbers of fossils—vertebrate and invertebrate—have been discovered incredibly well-preserved.1,2...

NEWS
The Resurrection and the Origin of Life
At Easter time we focus on the cardinal Christian doctrine of the Resurrection. Without the Resurrection, Christianity is a sham. The truth that Jesus...

NEWS
Is an Ancient Extinct Tree-Dweller Our Relative?
Human evolution has always been hazy with seemingly as many attempted explanations for how we evolved from animals as there are paleoanthropologists. Evolutionists...

NEWS
The Return of the Dire Wolf?
There’s been much recent excitement about the birth of three dire wolf (Aenocyon dirus) puppies by a Dallas-based biotech company: Colossal Bioscience....

CREATION PODCAST
Cracks in the Layers: Lake Suigetsu and the Old Earth Illusion...
Welcome to the third episode in a series called “The Failures of Old Earth Creationism.” Many Christians attempt to fit old earth...

NEWS
Fish Fossil Vomit
A rather unsavory news story recently appeared regarding fossilized vomit. Although it’s hardly dinner table conversation, it nonetheless supports...

NEWS
Dino Footprints Down Under
Dinosaur trackways1 are once again making the news. Australia is the setting of a remarkable series of dinosaur tracks attributed to ornithischian...

NEWS
April 2025 ICR Wallpaper
"But the Helper, the Holy Spirit, whom the Father will send in My name, He will teach you all things, and bring to your remembrance all things...