Pitcher Plants Designed to Attract Bats | The Institute for Creation Research

Pitcher Plants Designed to Attract Bats

Even children learn that plants and animals depend on one another. Plants release oxygen for animals to breathe, and plants make food—mostly sugar—for animals to eat. In turn, animals produce carbon dioxide so plants can grow using sunlight. This ecological interdependence shows enough divine design to inspire any honest thinker to consider a Creator, but a recently discovered interaction between pitcher plants and bats shows even more.1

Pitcher plants in tropical Borneo, the largest island in Asia, attract a particular species of bat to roost right inside their pitchers. The plants absorb nitrogen from the bat waste that drops to the bottom of the pitchers, and the bats enjoy comfy digs. Researchers already knew that pitcher plants in South American jungles grow flowers that attract bats for pollination, but the Asian version is unique. They give bats a safe place to roost during daylight hours. How do bats discern these preferred pitcher plants from the surrounding dense jungle foliage, and does the answer to that question help explain how this all might have evolved?

German specialists worked with biologists from Brunei, Borneo to track down the specifics on how pitcher plants attract bats. They published their results in Current Biology.2 The pitcher plants present concave reflectors that attract their bat buddies. Bats’ high-pitched sound waves bounce off the reflector, so it stands out against the drab-sounding jungle background. The pitcher’s sonic reflector has three other precise design features.

1. The plant’s reflector is situated just above the pitcher’s opening. To the bat, the reflector sounds very loud, but the opening below absorbs sound. The bats easily pick out this distinct contrast.

2. The area containing the reflector is larger than related pitcher plants that attract insects, increasing its sonic signal.  

3. It reflects distinct sonic patterns on either side so that the bats can detect it from many angles.

The plant reflector’s size and side-reflecting patterns only work when a certain range of sound frequencies strike it. Of course, these exactly match the vocal range of these local bats, which happen to hold the record for highest frequencies of all bats so far measured. For more about animal sonar, watch our short video here.

How did all this interdependent fine-tuning happen? For a pitcher plant to construct the right size and shape reflector in the right place, it needs just the right building instructions in its DNA. And no number of high-pitched bat calls can somehow reach into plant-seed DNA and write new reflector construction code.

The Current Biology study authors wrote, “In the Neotropics, a few bat-pollinated plants found an efficient solution to attract bats by developing floral ultrasound reflectors, which enabled them to exploit the bats’ echolocation system.”2 But when is the last time a plant, animal, or any non-person willfully changed its DNA to solve an environmental challenge? Plus, how would these plants ever “know” about the benefits of bat guano’s nitrogen until after they already had fully formed bat homes to attract it?

The plants found no solution, developed no reflectors, and exploited no echolocation. People alone can perform these kinds of creative tasks, and the best example is the person of the Lord Jesus Christ, “For by Him all things were created that are in heaven and that are on earth, visible and invisible.”3

Pitcher plant reflectors reflect creation—His creation—and this interdependent pitcher plant-bat system showcases the ingenious design within that creation.

References

  1. Also, all animals either directly or indirectly get their necessary sugar energy from plants. See Demick, D. 2000. The Unselfish Green Gene. Acts & Facts. 29 (7): i-iv.
  2. Schoner, M. G. et al. 2015. Bats Are Acoustically Attracted to Mutualistic Carnivorous Plants. Current Biology. 25 (14): 1911-1916.
  3. Colossians 1:16a.

*Mr. Thomas is Science Writer at the Institute for Creation Research.

Article posted on September 14, 2015.

The Latest
NEWS
Was a Key to Photosynthesis Evolution Discovered?
Northern Canadian lakes were the source of recently discovered unique photosynthetic bacteria of the phylum Chloroflexota. After years of culturing,...

CREATION PODCAST
Four Moons That Indicate a Young Universe | The Creation Podcast:...
Earth has one moon, but Jupiter has many! What can we learn from our celestial neighbor's satellites? Do they indicate youth?   Host...

ACTS & FACTS
Creation Kids: Seeds and Sprouts
by Renée Dusseau and Susan Windsor* You're never too young to be a creation scientist and explore our Creator's world. Kids, discover...

APOLOGETICS
Christ’s Creativity in Canyon Critters
Grand Canyon animals display many marvelous traits and behaviors as they live life in that harsh habitat. These canyon creatures succeed thanks to the...

ACTS & FACTS
Standing Against False Science
I’m Michael Stamp, and I’m in my 12th year as an editor at the Institute for Creation Research. It’s always an encouragement to see...

ACTS & FACTS
Oysters and Pre-Flood Longevity
The oyster species Crassostrea virginica, also known as the eastern oyster, is a prized seafood. Research has demonstrated that a fossil version of...

ACTS & FACTS
Galápagos Finches: A Case Study in Evolution or Adaptive Engineering?
A group of birds known as Darwin’s finches live in the Galápagos Islands, which are located in the Pacific Ocean 600 miles west of Ecuador....

ACTS & FACTS
Hot Springs National Park: Hydrothermal Springs Formed By The...
Hot Springs National Park is located about an hour southwest of Little Rock in the folded Ouachita Mountains of central Arkansas. It is the second smallest...

ACTS & FACTS
Why Biology Needs A Theory of Biological Design—Part 2
“Based on a true story” is included by movie producers to add authenticity, importance, and a flair of anticipation. So, my account of how...

NEWS
Marine Fossil Tapeworm Is Still a Tapeworm
The Flood was both sudden and rapid. The burial of creatures—including delicate plants and soft-bodied animals like jellyfish1—occasionally...