Dual-Gene Code Discovery Highlights Designed Biocomplexity | The Institute for Creation Research

Dual-Gene Code Discovery Highlights Designed Biocomplexity

Recent evidence of dual codes in the protein-coding sections of genes raised the bar on our understanding of genome complexity.1,2 Now a new study is showing that the control regions of genes contain dual codes as well.3 This newly discovered level of innovation clearly reflects elegant design rather than chance processes.

Genes produce RNA molecules called transcripts, some of which code for proteins while others are used directly by the cell. In either case, the gene has a complexly encoded control region at the beginning of its sequence called a "promoter." These promoter segments integrate a variety of control inputs based on the cell or tissue type, among other factors. They also recruit a variety of proteins called transcription factors that initiate the copying of the gene into an RNA transcript by an enzyme called RNA polymerase.

Many of the control codes in gene promoters that govern their activity have been difficult for scientists to decipher because they act in a complex combinatorial system with other factors. Further complicating matters is the recent discovery that multiple promoter regions exist, and each one is highly cell-type specific.4 So what is telling the transcriptional machinery which specific promoter site to use for a given gene and precisely when to begin transcription? While many functional promoter elements are now being identified, the cellular mechanisms for properly selecting which one to use remains unclear.

In this recent study, researchers used the developing zebrafish embryo as the model genetic system to study gene promoters. In the early development of the zebrafish embryo, the gene products (RNAs and proteins) inherited from the mother do most of the work in the cell.3 The genome of the zygote (newly dividing embryonic cells) becomes activated at the tenth-cell cycle—marking what is called the mid-blastula transition—providing an ideal opportunity to study how different promoter regions are selected and function in genes.

It was discovered that during this transition, the change from maternal to zygotic transcription involves a switch between two different promoter regions in many of the embryo's genes. But the really amazing aspect of this feature is that the initiation codes (essentially a form of genetic grammar) between the two promoter regions overlap—the coded information contains dual meanings depending on the context during the transition. The differences between the two promoter states (maternal vs. zygotic) is also defined by different three-dimensional conformations of the DNA molecule in the promoter region. The exact nature of this phenomena remains to be determined and the researchers state "The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts."3

Clearly, the continuing discovery of dual meanings, messages, and functions in the same stretches of DNA will only continue to increase as genomes become more thoroughly scrutinized with advanced technologies. Designed irreducible biocomplexity is the only viable explanation for such discoveries, and this points to an incredibly intelligent Designer.

References

  1. Tomkins, J. 2014. Duons: Parallel Gene Code Defies Evolution. Creation Science Update. Posted on icr.org January 6, 2014, accessed April 8, 2014.
  2. Stergachis, A. B. et al. 2013. Exonic Transcription Factor Binding Directs Codon Choice and Affects Protein Evolution. Science. 342 (6164): 1367-1372.
  3. Haberle, V. et al. 2014. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature. doi:10.1038/nature12974.
  4. Batut, P. et al. 2013. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Research. 23 (1):169–180.

*Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in genetics from Clemson University.

Article posted on April 9, 2014.

The Latest
NEWS
Valued Longtime ICR Employee Mary Smith Retires
Mary Morris Smith, an employee of the Institute for Creation Research for many years, has retired. The second daughter of ICR founder Dr. Henry M. Morris...

NEWS
Man of Science, Man of God: George Washington Carver
Who:  George Washington Carver What: Father of Modern Agriculture When: 1864 or 1865 – January 5, 1943 Where: Diamond Grove,...

ACTS & FACTS
The Scopes Monkey Trial: A Battle of Worldviews
Rhea County Courthouse in Dayton, Tennessee, and its statue of William Jennings Bryan Image credit: M. Mueller The Scopes Monkey...

ACTS & FACTS
Long Non-Coding RNAs: The Unsung Heroes of the Genome
Evolutionary theory holds that all living things came about through random, natural processes. So conventional scientists believe the genome has developed...

ACTS & FACTS
Yosemite National Park, Part 1: Tiny Clues of a Grand Picture
Yosemite National Park in California is a sure source of stunning scenery. It’s no wonder that American naturalist John Muir persuaded President...

ACTS & FACTS
From Inference to Theory: A Common Design Case Study
Without a doubt, humans, chimpanzees, and other organisms share similar features. An early explanation was that these features reflect similar designs...

ACTS & FACTS
Creation Kids: T. rex
by Michael Stamp and Susan Windsor* You're never too young to be a creation scientist and explore our Creator's world. Kids, discover...

ACTS & FACTS
Entering By The Door
Recently, I hosted a visiting pastor from a large church at ICR’s Discovery Center. As I guided him through our Dallas museum, one conversation...

ACTS & FACTS
Creation Mission in Fiji
Michele discusses pages from Explore the World with boys at an orphanage Image credit: Brian Thomas In 2024 my wife, Michele,...

NEWS
Distant Galaxies Continue to Challenge the Big Bang
Recently, a team of scientists released data collected from 800,000 galaxies at different distances from Earth, all lying within the same narrow slice...