Paddlefish Are Tuned to Eat Only Plankton | The Institute for Creation Research

Paddlefish Are Tuned to Eat Only Plankton

Paddlefish, also known as spoonbill catfish, are cartilaginous fish that inhabit freshwater lakes. They only like to feed on plankton, a category of aquatic food that includes tiny crustaceans like brine shrimp and water fleas. Paddlefish hunt using sensors on their paddle, or nose, that guide them right to their small prey. Biologists from Ohio University recently discovered why this system works so well.

Special cells called electroreceptors are embedded within tiny pockets distributed along the skin surface of the paddlefish's long nose. These receptors, which detect weak electric currents, would be useless unless they could send their signals to the brain for processing—which they do via other neurons. The researchers determined the range of electric intensity over which the paddlefish's system was most effective.

The scientists measured a live fish's neuron activity as it responded to electric patterns and intensities. Zooplankton heartbeats produce tiny electric impulses. Researchers compared the fish's response to weaker patterns that mimick those produced by plankton with the way it responded to stronger signals. "The paddlefish sensors best encode the signals emitted by zooplankton," according to an AIP Physics News Highlights report.1 The results of the study appear in the interdisciplinary journal Chaos.

But the researchers also observed "internal oscillators" that coordinate signals from the paddlefish electroreceptors into wave-like pulses that flash from the paddle tip toward the gills.

When the investigators increased the electric power stimulus, the fish's detectors lost the wave pulses, instead firing bursts of nerve activity amidst "noise" without patterns. These results suggested that when whole groups of electroreceptors receive electric signals from plankton, they are more likely to transmit stronger signals toward the brain.

In this way, the fish not only can detect the presence of plankton, but also their distance from its mouth. Apparently, the fish's elaborate system converts the plankton's electric signal strength into a distance, and constantly updates and compares that distance during successive oscillations of its electroreceptors. These signals then guide the fish right to its meal, even in murky waters.

Researchers found that this ingenious system best detected plankton signals. And the rest of the fish's body, including the physical structure of the brain, paddle, gills and mouth, is all coordinated to eat only zooplankton. In fact, paddlefish do not eat insects or worms, which keeps them from falling prey to fishermen's lures.

This means that the first paddlefish had to have every necessary component perfectly fitted together from the beginning in order to find its food. And that means that paddlefish were unquestionably created.

References

  1. Paddlefish sensors tuned to detect signals from zooplankton prey. Physics News Highlights. American Institute of Physics news release, January 4, 2012. Reporting on research published in Neiman, A. B. and D. F. Russell. 2011. Sensory coding in oscillatory electroreceptors of paddlefish. Chaos. 21 (4): 047505.

Image credit: USGS

* Mr. Thomas is Science Writer at the Institute for Creation Research.

Article posted on January 24, 2012.

The Latest
NEWS
Insect Eyes Reflect Creation
Research into insect eyes continues to reveal amazing structure and function. For example, although fruit flies’ eyes are attached firmly to their...

NEWS
February 2026 ICR Wallpaper
"Be strong and of good courage, do not fear nor be afraid of them; for the LORD you God, He is the One who goes with you. He will not leave you...

NEWS
Microgravity's Effect on Bacteriophages Is Not Evolution
The word evolution is often used imprecisely, leading the public to believe that any biological change is evolution, and, therefore, it’s a fact.1...

NEWS
Engineered for Extremes: The Hidden Precision of a Salt Lake...
Water that is nearly five times saltier than the ocean is deadly to most animals. But in Utah’s Great Salt Lake, scientists have found a tiny...

CREATION PODCAST
Giant Sequoias: Too Complex to Be Accidental | The Creation Podcast:...
What living thing grows taller than a 25-story building, survives raging wildfires, and actually depends on those fires to reproduce? Giant sequoias...

NEWS
Bound by Design: How a Universal Temperature Law Reveals Life’s...
What if every living creature—from coral reefs and cold-water fish to mountain flowers and desert reptiles—followed the same hidden temperature...

NEWS
The Flood Explains 18,000 Dinosaur Tracks in Bolivia
A new discovery of 18,000 individual dinosaur tracks in the Bolivian El Molino Formation contains the highest number of theropod dinosaur tracks in...

NEWS
Prolonged 40-Year Growth in T. Rex: Evidence for Pre-Flood Longevity?
An open access 2026 PeerJ research paper claims that T. rex took 40 years to reach its full adult body size, in contrast to a much shorter previous...

NEWS
Recent Discovery of a Strange Microbe Gives No Clues to Evolution
Research into God’s living creation is dynamic and always surprising. This is true whether one peers into the deepest reaches of space or dives...

NEWS
Built to Adapt: What Microbial Flexibility Reveals about Biological...
Imagine a machine that keeps working even when its parts change slightly or its surroundings shift. Most human-made machines would fail under that kind...